keras

Convolution1D

keras.layers.convolutional.Convolution1D(nb_filter, stack_size, filter_length, 
        init='uniform', activation='linear', weights=None, 
        image_shape=None, border_mode='valid', subsample_length=1, 
        W_regularizer=None, b_regularizer=None, W_constraint=None, 
        b_constraint=None)

Convolution operator for filtering neighborhoods of one-dimensional inputs.


Convolution2D

keras.layers.convolutional.Convolution2D(nb_filter, stack_size, nb_row, nb_col, 
        init='glorot_uniform', activation='linear', weights=None, 
        image_shape=None, border_mode='valid', subsample=(1,1))

Convolution operator for filtering windows of two-dimensional inputs. This is a wrapper for Theano's conv2d.


MaxPooling1D

keras.layers.convolutional.MaxPooling1D(pool_length=2, ignore_border=True)

MaxPooling2D

keras.layers.convolutional.MaxPooling2D(poolsize=(2, 2), ignore_border=True)

This is a wrapper for Theano's max_pool_2d.