keras.layers.convolutional.Convolution1D(nb_filter, stack_size, filter_length,
init='uniform', activation='linear', weights=None,
image_shape=None, border_mode='valid', subsample_length=1,
W_regularizer=None, b_regularizer=None, W_constraint=None,
b_constraint=None)
Convolution operator for filtering neighborhoods of one-dimensional inputs.
keras.layers.convolutional.Convolution2D(nb_filter, stack_size, nb_row, nb_col,
init='glorot_uniform', activation='linear', weights=None,
image_shape=None, border_mode='valid', subsample=(1,1))
Convolution operator for filtering windows of two-dimensional inputs. This is a wrapper for Theano's conv2d.
keras.layers.convolutional.MaxPooling1D(pool_length=2, ignore_border=True)
keras.layers.convolutional.MaxPooling2D(poolsize=(2, 2), ignore_border=True)
This is a wrapper for Theano's max_pool_2d.