keras.layers.recurrent.SimpleRNN(input_dim, output_dim,
init='glorot_uniform', inner_init='orthogonal', activation='sigmoid', weights=None,
truncate_gradient=-1, return_sequences=False)
Fully connected RNN where output is to fed back to input. Not a particularly useful model, included for demonstration purposes.
Input shape: 3D tensor with shape: (nb_samples, timesteps, input_dim)
.
Output shape:
return_sequences
: 3D tensor with shape: (nb_samples, timesteps, ouput_dim)
.(nb_samples, output_dim)
.Arguments:
[(input_dim, output_dim), (output_dim, output_dim), (output_dim,)]
.keras.layers.recurrent.SimpleDeepRNN(input_dim, output_dim, depth=3,
init='glorot_uniform', inner_init='orthogonal',
activation='sigmoid', inner_activation='hard_sigmoid',
weights=None, truncate_gradient=-1, return_sequences=False)
Fully connected RNN where the output of multiple timesteps (up to "depth" steps in the past) is fed back to the input:
output = activation( W.x_t + b + inner_activation(U_1.h_tm1) + inner_activation(U_2.h_tm2) + ... )
Not a particularly useful model, included for demonstration purposes.
Input shape: 3D tensor with shape: (nb_samples, timesteps, input_dim)
.
Output shape:
return_sequences
: 3D tensor with shape: (nb_samples, timesteps, ouput_dim)
.(nb_samples, output_dim)
.Arguments:
keras.layers.recurrent.GRU(input_dim, output_dim=128,
init='glorot_uniform', inner_init='orthogonal',
activation='sigmoid', inner_activation='hard_sigmoid',
weights=None, truncate_gradient=-1, return_sequences=False)
Gated Recurrent Unit - Cho et al. 2014.
Input shape: 3D tensor with shape: (nb_samples, timesteps, input_dim)
.
Output shape:
return_sequences
: 3D tensor with shape: (nb_samples, timesteps, ouput_dim)
.(nb_samples, output_dim)
.Arguments:
References:
keras.layers.recurrent.LSTM(input_dim, output_dim=128,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh', inner_activation='hard_sigmoid',
weights=None, truncate_gradient=-1, return_sequences=False)
Long-Short Term Memory unit - Hochreiter 1997.
Input shape: 3D tensor with shape: (nb_samples, timesteps, input_dim)
.
Output shape:
return_sequences
: 3D tensor with shape: (nb_samples, timesteps, ouput_dim)
.(nb_samples, output_dim)
.Arguments:
input_dim: dimension of the input.
References: